Calculate vibration response using Barrett, Franken, and dynamic pressure scaling methods.
An aluminum cylinder has a diameter of 40 inches (3.333 ft) and skin thickness of 0.25 inches. The acoustic environment has an SPL of 120 dB at 100 Hz (1/3 octave band). Estimate the vibration response.
Reference: Irvine, T., "Vibration Response of a Cylindrical Skin to Acoustic Pressure via the Franken Method," vibrationdata.com, 2008.
Step 1: Calculate X-axis value
Step 2: Read Y-value from Franken curve (upper limit)
Step 3: Solve for G_rms
Step 4: Convert to PSD (optional)
Import your SPL spectrum data using the "Import CSV" button. Expected format:
Supports comma, tab, or space delimited files. Header row is optional.
| Freq (Hz) | SPL (dB) | f×d (Hz·ft) | Y (dB) | BW (Hz) | G_rms (g) | PSD (g²/Hz) | |
|---|---|---|---|---|---|---|---|
| 200 | -150.0 | 4.6 | 0.1000 | 2.16e-3 | |||
| 250 | -146.5 | 5.8 | 0.1884 | 6.13e-3 | |||
| 315 | -142.9 | 7.3 | 0.3601 | 1.78e-2 | |||
| 400 | -140.2 | 9.3 | 0.6169 | 4.11e-2 | |||
| 500 | -138.0 | 11.6 | 1.0000 | 8.64e-2 | |||
| 630 | -136.3 | 14.6 | 1.5253 | 1.59e-1 | |||
| 800 | -134.6 | 18.5 | 2.0870 | 2.35e-1 | |||
| 1000 | -133.0 | 23.2 | 2.8184 | 3.43e-1 | |||
| 1250 | -132.0 | 28.9 | 3.1498 | 3.43e-1 | |||
| 1600 | -131.0 | 37.1 | 3.1748 | 2.72e-1 | |||
| 2000 | -130.0 | 46.3 | 3.1623 | 2.16e-1 | |||
| 2500 | -128.9 | 57.9 | 3.1991 | 1.77e-1 | |||
| 3150 | -128.0 | 73.0 | 3.1623 | 1.37e-1 | |||
| 4000 | -128.0 | 92.6 | 2.8184 | 8.57e-2 | |||
| 5000 | -128.0 | 115.8 | 2.5119 | 5.45e-2 | |||
| 6300 | -128.7 | 145.9 | 2.0685 | 2.93e-2 | |||
| 8000 | -129.7 | 185.3 | 1.6314 | 1.44e-2 | |||
| 10000 | -131.0 | 231.6 | 1.2589 | 6.84e-3 | |||
| 12500 | -132.3 | 289.5 | 0.9674 | 3.23e-3 | |||
| 16000 | -133.7 | 370.6 | 0.7318 | 1.45e-3 | |||
| 20000 | -135.0 | 463.2 | 0.5623 | 6.83e-4 |